Derivatives of (modified) Fredholm Determinants and Stability of Standing and Traveling Waves

نویسندگان

  • FRITZ GESZTESY
  • YURI LATUSHKIN
  • KEVIN ZUMBRUN
چکیده

Continuing a line of investigation initiated in [11] exploring the connections between Jost and Evans functions and (modified) Fredholm determinants of Birman–Schwinger type integral operators, we here examine the stability index, or sign of the first nonvanishing derivative at frequency zero of the characteristic determinant, an object that has found considerable use in the study by Evans function techniques of stability of standing and traveling wave solutions of partial differential equations (PDE) in one dimension. This leads us to the derivation of general perturbation expansions for analytically-varying modified Fredholm determinants of abstract operators. Our main conclusion, similarly in the analysis of the determinant itself, is that the derivative of the characteristic Fredholm determinant may be efficiently computed from first principles for integral operators with semi-separable integral kernels, which include in particular the general one-dimensional case, and for sums thereof, which latter possibility appears to offer applications in the multi-dimensional case. A second main result is to show that the multi-dimensional characteristic Fredholm determinant is the renormalized limit of a sequence of Evans functions defined in [23] on successive Galerkin subspaces, giving a natural extension of the one-dimensional results of [11] and answering a question of [27] whether this sequence might possibly converge (in general, no, but with renormalization, yes). Convergence is useful in practice for numerical error control and acceleration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Derivatives of the Evans function and (modified) Fredholm determinants for first order systems

The Evans function is a Wronskian type determinant used to detect point spectrum of differential operators obtained by linearizing PDEs about special solutions such as traveling waves, etc. This work is a sequel to the paper “Derivatives of (modified) Fredholm determinants and stability of standing and traveling waves”, published by F. Gesztesy, K. Zumbrun and the second author in J. Math. Pure...

متن کامل

Nonlinear Counterpropagating Waves, Multisymplectic Geometry, and the Instability of Standing Waves

Standing waves are a fundamental class of solutions of nonlinear wave equations with a spatial reflection symmetry, and they routinely arise in optical and oceanographic applications. At the linear level they are composed of two synchronized counterpropagating periodic traveling waves. At the nonlinear level, they can be defined abstractly by their symmetry properties. In this paper, general as...

متن کامل

Traveling Waves of Some Symmetric Planar Flows of Non-Newtonian Fluids

We present some variants of Burgers-type equations for incompressible and isothermal planar flow of viscous non-Newtonian fluids based on the Cross, the Carreau and the power-law rheology models, and on a symmetry assumption on the flow. We numerically solve the associated traveling wave equations by using industrial data and in order to validate the models we prove existence and uniqueness of ...

متن کامل

Controlling the stability transfer between oppositely traveling waves and standing waves by inversion-symmetry-breaking perturbations.

The effect of an externally applied flow on symmetry degenerated waves propagating into opposite directions and standing waves that exchange stability with the traveling waves via mixed states is analyzed. Wave structures that consist of spiral vortices in the counter rotating Taylor-Couette system are investigated by full numerical simulations and explained quantitatively by amplitude equation...

متن کامل

Spectral stability of periodic NLS and CGL solutions

We consider periodic traveling wave solutions to the focusing nonlinear Schrödinger equation (NLS) that have been shown to persist when the NLS is perturbed to the complex Ginzburg-Landau equation (CGL). In particular, we show that these periodic traveling waves are spectrally stable solutions of NLS with respect to periodic perturbations. Furthermore, we use an argument based on the Fredholm a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008